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In the routine analysis of osmometric data for polymer–solvent systems, a graphical method has been used to
estimate the vinal coefficients and number average molar mass. However, it is realized that the graphical method
has the disadvantage due to inaccuracies involved in the estimation of the intercept and slope. The least-squares
method is certainly a better alternative, but it also has certain limitations. A new analytical method is suggested
which is no less effective than the least-squares method, but also provides valuable information about the
behaviour of the observed points in the experimental data. A comparative study of the different methods is
presented here to indicate the advantages of the new method over the conventional treatments. O 1997 Elsevier
Science Ltd.
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Introduction

Osmometry is one of the classical methods, used
routinely in most polymer characterization laboratories, to
estimate molar mass and virial coefficients of polymers in
solution2. In an osmotic experiment, solvent flow across a
semi-permeable membrane is prevented by osmotic pres-
sure, r, which is a difference in pressure across the
membrane. However, in the theoretical development of
osmometry, an equation analogous to ideal gas law, i.e. TV
= RT (where V is volume of the solution containing a mole
of the solute) is used. This equation is applicable to low
concentrations, i.e. at sufficiently low mole fraction of the
solute, n2, so that

cRT
TV= n2RT or x = —

M
(1)

where C( = n2M/V) is the concentration in mass per unit
volume and M is the molar mass of the polymer.

For a polymer solution over the range of concentrations it
becomes necessary to consider higher virial coefficients, so
that non-ideality can be studied:

~= ++Ac + BC2
n

(2)

where A and B are, respective , the second and third virial
coefficients, ti. = ~ n#Mi/ f ni is the number average
molar mass of the polymer, ni being the number of mole-
cules of molar mass, Mi, per gram of the dry polymer. In
essence, osmometry indicates the number of polymer parti-
cles per unit volume.

However, to understand the interactions between polymer
and solvent molecules, accurate values of A and B are
required. The majorit of research papers

x
2–5including some

standard textbooks6- deal with the calculation of A by a
graphical me-thod,i.e. from a plot of T/cRT versus c and by
ignoring B, Mn and A are determined from the intercept and
slope, respectively. When the third virial coefficient, B, is
taken into account, it is usually estimated using the

following equation:

(3)

when the third virial coefficient is assumed to be related to
the second virial coefficient by the following equations:

(4)

Thus, from the graph of Jr/c) versus c, the intercept on the
ordinate axis and slope of the line give a fairly good estimate
of the parameters. Alternatively, one can apply the least-
squares method to equation (2) or equation (3) to estimate
A, B and fi..

The graphical method has a disadvantage due to
inaccuracies involved in the estimate of the intercept and
slope. Also, both in the graphical method and the least-
squares method, it is not clear as to how different
observation points influence the ultimate estimation of
M., A and B. For this reason, we suggest the use of a simple
analytical method which provides valuable information
about the behaviour of the observed points in the data,
besides being as effective as the least-squares method.

Analytical approach

In this paper, we carry out a comparative study of the
different methods with the help of an example and show that
the information provided by the, analytical method draws
our attention to some’observed points that lead to erratic
results and help us to ignore them in the final analysis.

In osmometry, m is calculated from the height, h of the
liquid column using m = hpg, where p is density of the
polymer solution and g, the gravitational acceleration. A set
of hi values are obtained corresponding to concentrations, ci
so that the experimental data consist of a set of observation
points:

* To whom correspondence should be addressed (cij hi) where i= 1, 2,..., p (5)
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Since equation (2) is non-linear, an expeditious method of
finding ti. and A is to consider its linearized form given
below:

Table 1 Experimentalosmometricdata of polystyrenein toluenes

Concentration h (cm) toluene H = hlc ,H
(g l-’)

h .—
()

A + A&
c — M~

c , = 2.56 h , = 0.325 H, = 0.1270 ,H, = 0.3563
CZ = 3,80 hz = 0.545 Hz = 0.1434 ,Hz = 0.3787
c1 = 5.38 h~ = 0.893 H3 = 0.1660 ,H3 = 0,4074
CJ = 7,80 h, = 1.578 Hd = 0.2823 ,Hq = 0.4498
c~ = 8.68 h~ = 1.856 H~ = 0.2138 ,H5 = 0.4624

(6)

where A = RTlpg, R is the molar gas constant and T, the
Kelvin temperature. According to equation (6), a plot of hi/
ci versus ci is a straight line whose intercept on the ordinate
axis is )dfi. and the slope is AA.From this information, we
obtain M. and A.

By inserting the values of (ci, hi), i = 1,2 in equation (6),
two simultaneous equations emerge which can be solved to
give:

Table 2 Calculatedvaluesof the parametersfromequations(3), (6) and
(7) and Table I

(ij) A/kf,z(iJ1 )X4(;J, [,(~tiu)l(ij) [\(Nm,,)B’lt;,j)
(1,2)
(1,3)
(1,4)
(1,5)
(2,3)
(2,4)
(2,5)
(3,4)
(3,5)
(4,5)

0.0926
0.0915
0.0901
0.0906
0.0891
0.0875
0.0886
0.0852
0.0880
0.1002

0.0133
0.0138
0.0144
0.0142
0.0130
0.0147
0.0144
0.0150
0.0145
0.0131

0.3100
0.3099
0.3106
0.3119
0.3097
0.3118
0.3135
0.3132
0.3169
0.3379

0.0181
0.0181
0.0172
0.0173
0.0182
0.0171
0,0172
0.0175
0.0167
0.0144

~ = A(C,– c~) and* = (Hl – HJ
n (H2C1– H1C2) (c, – C*)A

(7)

where Hi = hi/ci, i = 1, 2, etc. If the set given by equation
(5) consists of morejhan two observation points, i.e. if p >
2, then denoting by M~(i,j)and A(i,j)the values determined by
the points (ci, hi) and (cj, hj), 1 ~ i < j ~ P, we take their
average:

M. = [(p–2)!2/P!][M.(1, z, + Mn(l,s)+ ... + Mno - I,p)l
(8)

A = [(p–2)!2!/p!][A[1,2) +A(1,3)+ ......... +Ao - I,p)l (9)

To calculate B, we need to consider the following three
simultaneous equations:

Table 3 ValuescalculatedfromTabfe / andequations(11)-(14)

(ij,k) mf”(;.j,k,

(1,2,3) 0.0964
(1,2,4) 0.0956
(1,2,5) 0.0948
(1,3,4) 0.0974
(1,3,5) 0.0978
(1,4,5) 0.0859
(2,3,4) 0.0929
(2,3,5) 0.0901
(2,4,5) 0.0821
(3,4,5) 0.0608

AA(;.j,k)

0.0111
0.0115
0.0121
0.0106
0.0106
0.0166
0.0126
0.0138
0.0186
0.0227

M(;,i,k) x 10’

3.548
2.750
1.873
2.229
1.072

-2.113
1.821
0.442
-3.348
-5.823

()(H1 hi
l+Ac~ + Bc? i = 1, 2, 3

~ ci = M.
(lo)

Solving these, we get the following set of relations:

A = – (1/ti)[(c; – c~)Hl + (c; – c?)Hz + (ci – c;)%]
(11)

B=(1/~z)[(c2– Cq)~I + (c3 – CI)HZ+ (cI – c2)H31(12)

jfn = ~Z[(C1 – C2)CIC2H3 + (c2 – C3)C2c3Hl

+ (CS – C, )CI C3HZ]-1 (13)

where

z = c1C2(CI – C2) + C2C3(C2– C3) + C3cl (C3 – c1) (14)

The symbols h and Hi have the same meanings as assigned
above.

Let us now considerp observation points with p >3 and
denote by A(ij,k), B(iJ,k) and Mn(i,j,k), the cot-responding

values determined by the points (cijhi), (cj,hj) and (ck,h~)
where 1 ~ i <j < ks p. In this case, there are p!/f@– 3)!3!
number of values of each of A, B and ~~. Taking an average
over these values in the final step, we obtain

Table 4 Valuesof A/Mnand AAcalculated from equation (6) by different
methods ‘

Method MM” AA No.of observation
pointsused from

Table 1

Graphical 0.0890 0.0145 All five
Least-squares 0.0892 0.0144 All five

Analytical 0.0902 0.0141 All five

‘ Table 2 is used for the analytical method

Table 5 Values of A/kf., L4 and )& from equation(2) by different
methods“M. =[@–3)!3!/p!] ~~n[i,j,k), i <~ < k (15)

Method AIM” M MI x 104 No. of
observation
points used

from Table 1

A =[@–3)!3!/p!] ~A(i,j,k), i <j < k (16)

B = [(p–3)!3!/p!] ~B(i,j, k), i <J< k (17) 3.5476
3.6441
2.5870
2.3638
-3.0128
0,9971

First three
Firstthree
First four
First four
All five
All five

Analytical
Least-squares

Analytical
Least-squares

Analytical
Least-squares

0.0964
0.0966
0.0955
0.0948
0.0889
0.0921

0.o1I 1
0.0109
0.0115
0.0120
0.0138
0.0132

Illustration

Consider the data taken from osmotic pressure measure-
ments on a solution of pol~styrene in toluene at 25°C with
density, p = 0.8618 g cm-- in Table I. J Table 3 is used in the analytical method.
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Table 6 Valuesof MM.,AAand Ml usingequations(3) and (4) a

Method L’lTfn AA M x 104 No.of
observation
pointsused

from Table 1

Analytical 0.0960 0.0112
Least-squares 0.0960 0.0112

Analytical 0.0966 0.0110
Least-squares 0.0966 0.0111

Analytical 0.0995 0.0108
Least-squares 0.0976 0.0109

Graphical 0.0967 0.0109

‘ Table 2 is used in the analytical method

3.283
3.280
3.120
3.176
2.893
3.044
3.062

First three
First three
First four
First four
AUfive
AUfive
All five

Table 7 Comparisonbetweendifferentmethods‘

Comparison between the three different methods. The gra-
phical method is applicable to equations (3) and (6) as they
are linear equations. The graphs corresponding to these are
given in Figures 1 and 2. First we consider determining the
values of M. and A only. The values of hl~. and AA
obtained by a linear graph (Figure 1) using equation (6),
the least-squares method and Table 2 prepared by the
analytical method, are listed in Table 4. They compare
very well. In this case, since we neglect B, the variations
in the results listed in Table 2 are not very significant. How-
ever, it should be noted here that the readings obtained from
graphs differ from person to person. Margerison and East’,

Formula Method m“ x 105 A X 104 B x 10* No. of observation
points used

Method I (a) Graphical 3.2950 4.9445 — All five points

hlc = ti(fin) + UC (b) Analytical 3.2500 4.7895 — All five points

A = (RT)/(pg) (c) Least-squares 3.2881 4.9200 — All five points

Method II (a) Analytical 3.0419 3.7714 1.2097 First three points

hlc = od(~n, + UC + ~C2 (b) Least-squares 3.0373 3.7327 1.2427 First three points

(c) Analytical 3.0694 3.907 0.8822 First four points

(d) Least-squares 3.0950 4.0744 0.8061 First four points

(e) Analytical 3,2978 4,7185 – 1.0274 All five points

(f) Least-squares 3.1827 4.51 0.3400 All five points

Method III (a) Analytical 3.0534 3.8296 1.1195 First three points

6 = m(l + B’c) (b) Least-squares 3.0539 3.8305 1.1185 First three points

(c) Analytical 3.0341 3.7507 1.0639 Firstfourpoints

A = 2B’lfin (d) Least-squares 3.0344 3.7840 1.0830 First four points

(e) Analytical 2.9465 3.6646 0.9865 All five points

B = (B’z)/(4~J (f) Least-squares 3.0058 3.7205 1.0381 All five points

(g) Graphical 3.0326 3.3712 1,0441 AU five points

aTables 4–6 are used for Methods I, 11and 111respectively

CKr31 ●

o 2 4 6 8

Figure 1 Plotof h/c versus c for polystyrene in toluene at 298.15 K with
values of intercept = 0.089 and slope = 0,0145.

Note that in carrying out averaging over different
sequences of observation points in the analytical method,
we used equations (8) and (9) for Tables 4, and 6 and
equations (15), (16) and (17) for Table 5.

from whose book we have picked up the data, have listed
results which when converted in our notations give

~= 0.09108 and VI= 0.0149
M.

Our next attempt is to determine the third virial coefficient
along with fin and A. Here, the problem is to fit the data to a
parabolic curve. First, we choose equation (10) for this pur-
pose. Because the graphical method is not suitable in this
case, the least-squares method and the analytical method are
employed to list the values of AIM., U and Ml in Table 5,
and in doing so the data in Table 1 have been chosen in the
sequence of 3, 4 and 5 observation points. This has become
necessary in view of the pattern of results obtained in Table
3 wherein we notice that, when observation points 4 and 5
dominate, the results obtained do not follow a regular pat-
tern. This is also noticeable to some extent in Table 2. It is
important to note here that the observation points 4 and 5
correspond to the higher side of the polymer concentration.

Next we consider equations (3) and (4). In this case, all
three methods are applicable. Table 6 exhibits the results
obtained by different methods. Here, the variations do not
stand out as clearly as in Table 5, possibly because of the
assumption made with regard to the relation between second
and third virial coefficients and the statistical nature of the
least-squares method.
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average of (a) and (b) in Method II. Thus,

w -

& W2 -

0.38 -

0.34-

032 o~
— c(~L)

Figure 2 Plot of @ versus c for the same system as in Figure 1 with
values of intercept = 0.311 and slope = 0.0175.

The final picture emerges clearly in Table 7. Here, we set
R = 8.314 X 107ergs K-’ mol-l, T = 298.15 K, p =

0.8618 g cm-~ and g = 981 cm S–2so that

h = ~= 2.932528 X 107
Pg

(18)

Since the concentrations in Table 1 are given in the units
g l-’, we convert them into g cm–3. Then using the results of
Tables 4–6 we arrive at the results listed in Table 7. In Table
7, the values of ~fl in Method 11and Method III agree very
well when only the first three points of the data are taken
into consideration. Since

and A is constant, all the methods should yield the same
value of ti.. From our computations, we notice that discre-
pancies occur either when the third virial coefficient is
ignored or when points other than the first three in the
data are included in computations.

In Method II of Table 7, no extra assumption is made for
the third virial coefficient B. Hence, the values of ~., A and
B that we can reasonably accept are obtained by taking an

~. = 3.0395 X 105g mol -1, A = 3.7520 X 10-4 and

B = 1.2262 X 10-2

The results obtained from Figure 2 are given at the end of
Table 7 and the values of M. and A agree very closely with
the values given above, while the value of B differs by a
margin of 13.7910.Similarly, the value obtained for B by
using all the five points of the data in the least-squares
method also differs from the above value of B by a
margin of 14.18%. These indicate the usefulness of the ana-
lysis of the behaviour of the observation points in determin-
ing the value of B.

The present treatment shows that if B is ignored, then the
results obtained from graphical, least-squares and analytical
methods agree closely. On the other hand, when B is taken
into account, the variation is significant and it is easy to
isolate unacceptable observation points from the experi-
mental data. It is therefore realized that such an exercise
would be useful in arriving at accurate values of kf., A and B
for the polymer–solvent systems from osmometric data.
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